Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database
نویسندگان
چکیده
We propose a new hybrid clustering framework to incorporate text mining with bibliometrics in journal set analysis.The framework integrates two different approaches: clustering ensemble and kernel-fusion clustering. To improve the flexibility and the efficiency of processing large-scale data, we propose an information-based weighting scheme to leverage the effect of multiple data sources in hybrid clustering. Three different algorithms are extended by the proposed weighting scheme and they are employed on a large journal set retrieved from the Web of Science (WoS) database. The clustering performance of the proposed algorithms is systematically evaluated using multiple evaluation methods, and they were cross-compared with alternative methods. Experimental results demonstrate that the proposed weighted hybrid clustering strategy is superior to other methods in clustering performance and efficiency. The proposed approach also provides a more refined structural mapping of journal sets, which is useful for monitoring and detecting new trends in different scientific fields.
منابع مشابه
Hybrid Clustering of Text Mining and Bibliometrics Applied to Journal Sets
To obtain correlated and complementary information contained in text mining and bibliometrics, hybrid clustering to incorporate textual content and citation information has become a popular strategy. In this paper, we propose a new computational framework of integrating text mining and bibliometrics to provide a mapping of journal sets. Two different approaches of hybrid clustering methods are ...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملBiBliometric methods for detecting and analysing emerging research topics
This study gives an overview of the process of clustering scientific disciplines using hybrid methods, detecting and labelling emerging topics and analysing the results using bibliometrics methods. The hybrid clustering techniques are based on biblographic coupling and text-mining and ‘core documents’, and cross-citation links are used to identify emerging fields. The collaboration network of t...
متن کاملGROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION
Stochastic nature of earthquake has raised a challenge for engineers to choose which record for their analyses. Clustering is offered as a solution for such a data mining problem to automatically distinguish between ground motion records based on similarities in the corresponding seismic attributes. The present work formulates an optimization problem to seek for the best clustering measures. In...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JASIST
دوره 61 شماره
صفحات -
تاریخ انتشار 2010